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Abstract

Epistemic models and action epistemic models are two important structures in epis-
temic logic. We present new categories with epistemic models and action epistemic
models. We name these categories epistemic categories. With these categories we
try to study epistemic logic in an abstract way. For example we try to answer the
following question that how we can combine the concept of time with epistemic logic.
Positive answer to this question helps us to study protocols. Also in a similar and
more abstract way we present new subcategories in the category of measurable spaces.
These categories can capture epistemic changes. We use syntax, semantics and de-
duction systems of coalgebras on these categories to help us in our studies. Indeed
we present a logical core for different epistemic changes.

Keywords: Epistemic logic, Dynamic epistemic logic, Category theory, Epistemic
category, Measurable space, Coalgebra.

1 Introduction

Epistemic logic was first introduced by Hintikka. Hintikka presented a logic for
knowledge and belief [11]. Epistemic logic is a logic for reasoning in knowledge.
For better studies of knowledge, epistemic logic was extended to dynamic epis-
temic logic [2,1]. Dynamic epistemic logic has action operators for capturing
epistemic actions. Dynamic epistemic logic focuses on epistemic changes. For
example with dynamic epistemic logic we can capture belief changes and belief
revision theory in dynamic version [5,6]. There have been efforts for combin-
ing dynamic epistemic logic and time. For example Van Benthem has studied
the merging of dynamic epistemic logic and temporal epistemic logic [7]. By
using category theory and coalgebras we extend these epistemic studies. First,
we introduce categories with epistemic models as objects and action epistemic
models as arrows. We study categorical properties of these categories. Also we
show how an epistemic model can define a measurable space and how an ac-
tion epistemic model can introduce a measurable function. We can introduce a
subcategory in measurable spaces in similar way. Indeed we can introduce mea-
surable spaces and measurable functions by Kripke models and action Kripke
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models, and define a category. Moss and Viglizzo studied coalgebras on mea-
surable spaces. They introduced a semantics and syntax for coalgebras on
measurable spaces as coalgebras on the category of sets [16,19,17]. Also Gold-
blatt presented deduction systems for these coalgebras on measurable spaces
[10]. We will use these studies for our purpose. We will use functors for for-
malizing the concept of time. For example, it has been shown that how linear
time can be captured in fan categories which are models for intiounistic logic.
We can capture different (polynomial) functors which can capture different
changes. So we can introduce a logical core for different changes particularly
epistemic changes.

2 Definitions

In this section we introduce some important definitions in epistemic logic [8,6].

Definition 2.1 [Single-agent epistemic model] A single-agent epistemic frame
is a structure (S, ∼ ) consisting of a set S of “states” and an “equivalence
relation” ∼ , i.e., a reflexive, transitive and symmetric binary relation on
S. We can define an epistemic model to be a structure S = (S, ∼ , ∥ . ∥ )
consisting of an epistemic frame (S, ∼ ) with a valuation map (on atomic
sentences) ∥ . ∥: Φ −→ P (S ) .

Definition 2.2 [S-proposition] Given an epistemic frame S, an S-proposition
is any subset P ⊆ S. We say that a state s satisfies the proposition P if s ∈ P .
Definition 2.3 [Doxastic proposition] A doxastic proposition is a map P as-
signing to each epistemic model S some S-proposition PS. We write s |= SP
iff s ∈ (P )S , and we say that the proposition P is true at s ∈ S.

Definition 2.4 [Single-agent action epistemic model] A single-agent action
epistemic model is an epistemic frame (Σ, ∼ ) together with a precondi-
tion map pre : Σ −→ Prop, associating to each element of Σ some doxastic
proposition preσ.

Definition 2.5 [Product update (for single-agent)] Let (S, ∼ , ∥ . ∥ ) be a
single-agent epistemic model and let (Σ, ∼ ′

, pre) be a single-agent action
epistemic model. The set of states of updated model S

⊗
Σ is taken to be:

S
⊗

Σ := { (s, σ ): s |= spre (σ ) }.
For (s, σ ) ∈ S

⊗
Σ put: (s, σ )|= p iff s |= p.

Definition 2.6 [Isomorphic models (for single-agent)] We say two epistemic
models S = (S, ∼ , ∥ . ∥ ) and S

′
= (S

′
, ∼ ′

, ∥ . ∥ ′
) are isomorphic if there

is a bijective function from S to S
′
(f : S −→ S

′
) which satisfies the following

conditions:
1) For any atomic sentence p and possible word s : p ∈ ∥ s ∥ iff p ∈∥ f(s) ∥ ′

;
2)s ∼ s′ iff f(s) ∼ ′

f(s
′
).

Definition 2.7 [Information cell (for single-agent)] Every epistemic relation
∼ induces a partition of the state space S. We denote the information cell for
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agent a and possible state s by s(a).

s(a) := {t ∈ S : s ∼ t } .

3 Epistemic Category

We introduce an epistemic category C, as follow:

Objects. All finite single-agent epistemic models (up to isomorphism) with
one information cell such that:
Ω : For s in S = (S, ∼ , ∥ . ∥ ) and s

′
in S

′
= (S

′
, ∼ ′

, ∥ . ∥ ′
) if we have: ∀p

(s ∈ ∥ p ∥ iff s
′ ∈ ∥ p ∥ ′

) , for any doxastic proposition we will have: s |= SP
iff s

′ |= S′P.

Remark. This condition is a skepticism condition. Two states that have
different theory (I mean that one of them satisfies at least a different doxastic
proposition.) must have a different experimental subject (I mean that one of
them satisfies at least a different atomic proposition (ontic fact).).

Arrows. All single-agent action epistemic models with one member.

Well-definition. To see that this category is well-defined we show if S ∼= S
′
,

for any action epistemic modelΣ = ( {σ }, ∼ , pre ) we have S
⊗

Σ ∼= S
′ ⊗

Σ.
For S ∼= S

′
there is an isomorphism f : S −→ S

′
. So we can consider an

isomorphism between S
⊗

Σ and S
′ ⊗

Σ such as:

(s, σ)
g //(f(s), σ) .

By considering the Ω condition, s and f(s) satisfy the same doxastic proposi-
tions. So g define an isomorphism between two models.
We will show that C is a category.

Identity arrow. For any epistemic model S = (S, ∼ , ∥ . ∥ ) , we define
action epistemic model

⊗
Σ with single-member frame (σ∗, ∼

′
) as below:

pre (σ∗ )= P∗;
P∗

S = S;⊗
Σ (S ):= S

⊗
Σ := { (s, σ ): s |= spre (σ ) }:= { (s, S ): s |= sP

∗
S }

:= { (s, S ): s ∈ S }∼= S.

with the definition of updated model the new model relation ∼ ′′
will be defined

as below:

(s, σ∗) ∼
′′
(s

′
, σ∗) iff σ∗ ∼

′
σ∗ and s ∼ s′ .

Composition. The composition of
⊗

Σ1 and
⊗

Σ2 in according to the the-
orem “The updated model outcome of act an action epistemic and an epistemic
model is an epistemic model” exists as below:⊗

Σ1

⊗
Σ2 =

⊗
Σ1 (

⊗
Σ2 ).

Associativity. By considering the definition of product updat, we see:
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⊗
Σ1 (

⊗
Σ2

⊗
Σ3 )= (

⊗
Σ1

⊗
Σ2 )

⊗
Σ3.

Since we have:

{ ( ( (s, σ1 ), σ2 ), σ3 ): s |= preσ3, (s, σ3 ) |= preσ2, ( (s, σ3 ), σ2 ) |= preσ1 },
for every s in epistemic model S.

Unit. For every epistemic model S and an action epistemic model
⊗

Σ we
have: ⊗

Σ
⊗

1S =
⊗

1S

⊗
Σ =

⊗
Σ.

So C is a category.

4 Epistemic Category C∥.∥S
Now we want to restrict our attention to epistemic models and action epistemic
models. Consider the set S of countable states that has the valuation ∥ . ∥ S
(On countable set of atomic proposition) such that for any two states s1, s2 we
will have ∃p s1 ∈ ∥ p ∥ S but s2 /∈ ∥ p ∥ S . We define the category C∥.∥S as
follows:

Objects. All finite single-agent epistemic models (S, ∼ , ∥ . ∥ ) (up to iso-
morphism) with one information cell such that S ⊆ S and ∥ . ∥ is the restriction
of ∥ . ∥ S on S and models satisfy Ω.

Arrows. All single-agent action epistemic models with one member such that
Σ ⊆ S.
It is provable that C∥.∥S is a category similar C.

Definition 4.1 [ S ] If in the epiastemic model (S, ∼, ∥ . ∥ S ) every two
states s and t be equivalent we will denote (S, ∼, ∥ . ∥ S ) by S.

4.1 Categorical properties

Definition 4.2 We say two arrows
⊗

Σ1 and
⊗

Σ2 are equal if and only if
we have S

⊗
Σ1
∼= S

⊗
Σ2.

.

Remark. Indeed this condition is a way for talking about equivalent actions.
We say two actions is equivalent if and only if they have same effect on initial
mode. Intuitively we can say two actions is equivalent in universe if and only
if they have same effect from Big Bang.

Well-definition. We have to show if two arrows
⊗

Σ1 and
⊗

Σ2 are equal,
for an epistemic model S = (S, ∼ , ∥ . ∥ ) we have S

⊗
Σ1
∼= S

⊗
Σ2. From

S
⊗

Σ1
∼= S

⊗
Σ2 we can conclude that there is an isomorphism between

these two models. Now we consider the restriction of f on S, with respect
to this restriction and Ω we can define an isomorphism between S

⊗
Σ1 and

S
⊗

Σ2.
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Theorem 4.3 S is the initial object of C∥.∥S

Proof. We show that for every model S there is a unique arrow f : S −→ S.
We can construct the unique arrow as below:

Σ = (
{
σ∗

}
,∼ ′

);

pre (σ∗ )= P , PS′ = S ∩ S′
.

With the definition of updated model and as models have one information cell
the new model relation ∼ ′′

will be defined as below:

(s, σ∗) ∼
′′
(s

′
, σ∗) iff σ∗ ∼

′
σ∗ and s ∼ s′ .

This model is isomorphic with S by s
f //(s, σ∗). The uniqueness of this

arrow is obvious by definition. 2

Theorem 4.4 (Colimit for C∥.∥S) The category C∥.∥S has colimits.

Proof. Consider cocons {f i : di −→ S } on diagram D. The co-
cone {f i : di −→ S } is a colimit for diagram D since for the cocone{
f

′
i : di −→ S

′ } there is exactly one arrow f : S −→ S
′
(S is initial object).

Also we have:

∀di ∈ Df ◦ f i = f
′
i.

The cocone {f i : di −→ S } has only one identity arrow id : S −→ S. 2

So the category Cop
∥.∥S is complete. (We showed that C∥.∥S has an initial

object and Cop
∥.∥S is a complete category. Also we have “a small category C is

complete if and only if it is cocomplete” [15]. So C∥.∥S is a complete category
and has products and coproducts.)

Remark. We can consider the identity arrow (id : S −→ S) as stability
property of a system. In this sense stability of a system can be an important
role in other properties of a system.

4.2 Multi-agent epistemic models with several information cells

We have studied epistemic categories by single-agent models with one informa-
tion cell and single-agent action models with one member. We can extend our
studies to multi-agent models with several information cells and action models
with several members.

Remark. For a multi-agent epistemic model (S, ∼ a, ∥ . ∥ ) and an action
epistemic model (Σ, ∼ a, pre ) we can introduce relation ∼ a with index
for agent a. In these models we can define a cell information for agent a
as s(a) := {t ∈ S : s ∼ at } . Also product update in multi-agent model can
be introduced for any relation ∼ a. When an action epistemic model has
several members and two actions σ1 and σ2 can act on state s, we denote
the correspondent state of these two actions by (s, σ1 ∨ σ2), since in bases
of Ω two states (s, σ1) and (s, σ2) are equal. Also for the update product
rule, (s,

∨
i∈Kσi) ∼ (s

′
,
∨

j∈Lσj) iff s ∼ s
′
and

∨
i∈Kσi ∼

∨
j∈Lσj , and

(
∨

i∈Kσi ∼
∨

j∈Lσj) iff ∃i ∈ K, ∃j ∈ L σi ∼ σj .
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In different conditions we can introduce other epistemic categories that
have same categorical properties as C∥.∥S . In below categories for objects
we have that states of epistemic models belong to a fixed set S and models
satisfy Ω. These categories have finite products, coproducts, initial and termi-
nal objects. Checking these properties is similar to checking properties of C∥.∥S .

• C1
∥.∥S

; Objects: All finite multi-agent epistemic models with one informa-
tion cell, Arrows: All multi-agent action epistemic models with one member.

• C2
∥.∥S ; Objects: All finite multi-agent epistemic models with one infor-

mation cell, Arrows: All multi-agent action epistemic models.

• C3
∥.∥S ; Objects: All finite single-agent epistemic models, Arrows: All

single-agent action epistemic models.

• C4
∥.∥S ; Objects: All finite multi-agent epistemic models, Arrows: All

multi-agent action epistemic models.

Remark. In epistemic categories that models (objects) have several informa-
tion cells the arrow from initial object to other objects can defined as below:
For epistemic model S = (S, ∼ a, ∥ . ∥ ) we consider action epistemic model∆
such that its frame(Σ, ∼ a ) is isomorphic to (S, ∼ a ) with si −→ σi Also
for pre we have:

pre (σi )= Pi, ( Pi )S = {si }.

5 Modeling Temporal Modalities in Categorical Context

For modeling temporal modalities � and ♢ we consider a finite set T with a
total order ≤ . We can define < and > naturally. t < t

′
intuitively means that

at time t, t
′
occurs in the future. A formula �φ Means that φ holds now and

at every future time (finitely) and a formula ♢φ means that φ holds now or at
some future time (finitely). So a proposition (�φ)(t) corresponds to (finitely)
conjunction of all φ(t

′
) with t

′
> t, while a proposition (♢φ)(t) corresponds to

disjunction of all φ(t
′
) with t

′
> t. So we can define modal operators � and ♢

as a function as below (see [13]):

(♢A)(t) =
⨿

t6t′A(t
′
), (�A)(t) =

∏
t6t′A(t

′
).

For a category that has finite products and coporducts we can define temporal
functors as below:

(♢f)(t) =
⨿

t6t′ f(t
′
), (�f)(t) =

∏
t6t′ f(t

′
).

Also we can generalize our operators (“always” and“ eventually” operators in
temporal logic) with “until” operator (see [14]):
φ�

′′
ψ holds if ψ will hold at some future time, and φ will hold until ψ holds.

φ ◮ ′′
ψ holds if φ will hold forever, in which case ψ is not required to hold at

any future time.
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We can model the logical operators �
′′
and ◮ ′′

by two functors as below:
(f �

′′
g)t =

⨿
t′∈(t,∞)((

∏
t′′∈(t,t′ )f t′′ )× gt′ )

(f ◮ ′′
g)t = (f �

′′
g)t +

∏
t′∈(t,∞)f t′

Also we can define propositions φ �
′
ψ and φ ◮ ′

ψ similar to φ �
′′
ψ and

φ ◮ ′′
ψ, but require φ to also hold at the present time. Propositions φ�ψ and

φ ◮ ψ additionally hold if ψ holds at the present time, in which case φ is not
required to hold at any time.

φ�
′
ψ = φ ∧ φ�

′′
ψ φ ◮ ′

ψ = φ ∧ φ ◮ ′′
ψ

φ� ψ = ψ ∨ φ�
′
ψ φ ◮ ψ = ψ ∨ φ ◮ ′

ψ

A proposition �′
φ holds if φ will always hold, and a proposition ♢′

φ holds if φ
will hold at some future time. A proposition �φ requires φ to also hold at the
present time, and a proposition ♢φ additionally holds if φ holds at the present
time.

�′
φ = φ ◮ ′′

⊥ ♢′
φ = ⊤�

′
φ

�φ = φ ◮ ′
⊥ ♢φ = ⊤� φ

Also derived temporal functors are as below:

f �
′
g = f × f �

′′
g f ◮ ′

g = f × f ◮ ′′
g

f � g = g + f �
′
g f ◮ g = g + f ◮ ′

g

�′
f = f ◮ ′′

0 ♢′
f = 1�

′
f

�f = f ◮ ′
0 ♢f = 1� f

These functors are used for modeling linear-time temporal logic on different
categories [13,14]. We can apply (for finite T ) these functors on epistemic
categories C∥.∥S ( C∥.∥S has finite products and coproducts). It seems that
category is an appropriate context for combining the linear concept of time
with epistemic logic. We will use these temporal functors in our studies.

6 Measure Theoretic Approach to Epistemic Models
and Action Epistemic Models

In this section we want to introduce a subcategory in measurable space category
by epistemic models and action epistemic models.

Definition 6.1 [Measurable space] Let A be a (Boolean) algebra on a set X,
i.e. a non-empty collection of subsets of X closed under complements and
binary unions. A is a σ-algebra if it is also closed under countable unions.
Then X = (X,A ) is called a measurable space and the members of A are its
measurable sets.
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Definition 6.2 [Measurable function] A measurable function f : (X,A) −→
(X ′ ,A′

) is a function f : X −→ X
′
that the inverse of every measurable set is

a measurable set. For this it suffices that f−1(A) ∈ A for all sets A in some
generating subset of A′

.

Theorem 6.3 Every epistemic model can produce a measurable space and ev-
ery action epistemic model can produce a measurable function.

Proof. Every epistemic model is a frame with a valuation V : Φ −→ P (M)
such that we can consider the valution as a non-empty collection of subsets of
M like below:

M = (M,R, {Xp }p∈Prop = A ).

A is a σ algabra (we consider thatM is finite) and A is a non-empty collection
of subsets of M that is closed under complements and binary unions.

Xp ∪Xq = Xp∪q;
Xc

p = X¬p.

So every finite epistemic model (without its relation) can define a measurable
space. Also we can consider different measures on M , µ : A −→ [0,∞ ] .
For action epistemic model (Σ, ∼ , pre ) , pre defines a relation S −→ S

⊗
Σ

with s −→ { (s, σ ): s |= spre (σ ) } and this defines a function in the dual
category Cop as below:

f : S
⊗

Σ −→ S
(s, σ) −→ s.

According to product update ( (s, σ )|= p iff s |= p) f is a measurable func-
tion. 2

6.1 Epistemic measurable categories

We saw how finite epistemic models can define measurable spaces and how ac-
tion epistemic models can define measurable functions. Measurable spaces that
are produced by epistemic models and measurable functions that are produced
by action epistemic models can define a category. It is sufficient to consider the
objects of Cop without their relations (epistemic relations) and indeed they are
measurable spaces. Also the arrows are single-agent action epistemic models
with one member that we can consider those such as measurable functions. We
denote this category by Cop. Similarly we can define the category Cop

∥.∥S .

Theorem 6.4 The category Cop
∥.∥S is a subcategory of measurable spaces cat-

egory

Proof. With pervious theorems and definitions is obvious. 2
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7 Syntax, Semantics and Deduction Systems for
Coalgebras Over Measurable Spaces

In this section we present our materials and notations from[10]. We will use
syntax, semantics and deduction systems for coalgebra on measurable spaces
for studying coalgebras over epistemic measurable categories.

Definition 7.1 [T -coalgebra] For a functor T :Meas −→Meas a T -coalgebra
is a pair (X,α) where X is a measurable space and α : X −→ TX is a measur-
able function.

Definition 7.2 [T -coalgebra morphism] A T -coalgebra morphismf :
(X,α) −→ (X

′
, α

′
) is given by a Meas-morphism f : X −→ X

′
that preserves

the transition structures in the sense that α
′ ◦ f = Tf ◦ α.

Definition 7.3 [Measurable polynomial functor] A measurable polynomial
functor is any functor on Meas that can be constructed in finitely many steps
from constant functors and/or the identity functor Id by forming products
T 1 × T 2 , coproducts T 1 + T 2, exponentials T

E and measure-space functors
△ T .

Definition 7.4 [The multigraph of ingredients] All the functors involved in
the construction of T , along with the identity functor construct the ingredients
of a measurable polynomial functor T . Define IngT of ingredients inductively
by putting:
• IngT = {T, Id } if T = Id or T = X.
• IngT = {T } ∪ IngT 1 ∪ IngT 2 if T = T 12 or T = T 1 + T 2.
• IngT = {T } ∪ IngS if T = SE or T = △ S.

We make IngT a multigraph with labelled edges k // ,
k ∈ {pr1, pr2, in1, in2, eve, next, ≥ p } . Also p is any rational number from
[0, 1 ] and e is an element of some set E occurring as an exponent in T .

We define the edges k // joining ingredients of T as below:

• S1 × S2
inj

T
//Sj and S1 + S2

prj

T
//Sj , for j ∈ {1, 2 } ;

• SE eve

T
//S for all e ∈ S;

• △ S P

T
//S for p ∈ [0, 1 ]Q ;

• Id next

T
//T .

7.1 Syntax and semantics

With ingredients of T we can define a many-sorted modal language for T -

coalgebras, such as [12,18] and developed in [16] . For S k //S
′

in IngT ,

[k] makes formulas of sort S out of formulas of sort S
′
. φ : S means that φ

is a formula of sort S and FormS denote the set of all formulas of sort S for
Γ ⊆ FormS , Γ : S means Γ is of sort S. φ :: S means that φ : S and every
subformula of φ of constant sort is a measurable set. Also Γ :: S means φ :: S
for all φ ∈ Γ.
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Notation. Suppose that each constant ingredient of T is given by X =
(X,AX,AX

g) and AX
g being a fixed generating set for AX .

For arbitrary ingredient S of T :
• ⊥ S : S.
• A : X if A ∈ Ag

X or A is a singelton subset of X.
• If φ1 : S and φ2 : S then φ1 −→ φ2 : S.

• If S k //S
′
in IngT with k ̸= ( ≥ p) and φ : S

′
, then [k]φ : S.

• If △ S ∈ IngT and φ :: S, then [ ≥ p]φ : △ S for any p ∈ [0, 1 ]Q .
Each formula φ : S in a T -coalgebra (X,α) can be interpreted as a subset
[[φ]]S

α of SX, we can define it inductively as follows (Using X ⇒ Y = (−X),
βp(A) = {µ | µ(A) ≥ p } .):
[[⊥ S ]]S

α = ∅;
[[A]]X′α = A;
[[φ1 −→ φ2]]S

α = [[φ1]]S
α ⇒ [[φ2]]S

α;
[[ [prj]φ ]]S1×S2

α = π−1[[φ]]Sj
α;

[[ [in1]φ ]]S1+S2
α = in1([[φ]]S1

α) ∪ in2(S2X);
[[ [in2]φ ]]S1+S2

α = in1(S1X) ∪ in2([[φ]]S2
α);

[[ [eve]φ ]]SE
α = eve

−1[[φ]]S
α;

[[ [next]φ ]]Id
α = α−1[[φ]]T

α;
[[ [ ≥ P ]φ ]]α = βp[[φ]]S

α.

Kripkean modal semantics can be introduced by α, x |= Sφ to mean that x ∈
[[φ]]S

α.

α, x 2 S ⊥ S ;

α, x |= XS ⇔ x ∈ A;
α, x |= Sφ1 −→ φ2 ⇔ (α, x |= Sφ1 ⇒ α, x |= Sφ2 );

α, x |= S1×S2 [prj ]φ ⇔ α, πj(x) |= Sjφ;

α, x |= S1+S2 [inj ]φ ⇔
(
x = inj(y) ⇒ α, y |= Sjφ );

α, f |= SE [eve]φ ⇔ α, f(e) |= Sφ;

α, x |= Id[next]φ ⇔ α, α(x) |= Tφ;

α, µ |= △S [ ≥ p]φ ⇔ µ([[φ]]S
α) ≥ p.

Also for modalities [k] we can indroduce : α, x |= S [k]φ iff
(xRky ⇒ α, y |= S′φ ).

7.2 T -Deduction systems

Axioms: The set AxS ⊆ FormS of S-axioms is defined, for all S ∈ IngT ,
to consist of the following formulas.
1. All Boolean tautologies φ : S;
2. For S = X, A : X and c ∈ X,
(a) {c } −→ A ifc ∈ A ,
(a) {c } −→ ¬A ifc /∈ A ;
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3. For S = S1 × S2, j ∈ {1, 2 } and φ : Sj ,
(a)¬[prj ]φ −→ [prj ]¬φ,
(b)¬[prj ] ⊥ Sj ;
4. For S = S1 + S2,
(a)¬[inj ]φ −→ [inj ]¬φ,
(b)¬[in1] ⊥ S1 ←→ [in2] ⊥ S2 ;
5. For S = UE and φ : U ,
(a)¬[eve]φ −→ [eve]¬φ,
(b)¬[eve] ⊥ U ;
6. For S = Id and φ : T ,
(a)¬[next]φ −→ [next]¬φ,
(b)¬[next] ⊥ T ;
7. For S = △ S,
(a)[ ≥ 1](φ −→ ψ) −→ ([ ≥ p]φ −→ [ ≥ p]ψ),
(b)[ ≥ p]⊤S′ ,
(c)[ ≥ p]¬φ −→ ¬[ ≥ q]φ if p+ q > 1,
(d)[ ≥ p](φ ∧ ψ) ∧ [ ≥ q](φ ∧ ¬ψ) −→ [ ≥ p+ q]φ if p+ q > 1,
(d)¬[ ≥ p]φ ∧ ¬[ ≥ q]ψ −→ ¬[ ≥ p+ q](φ ∨ ψ) if p+ q > 1.

Theorem 7.5 For any S ∈ IngT , all S-axioms are valid in all T -coalgebras.

Proof. See [10]. 2

Definition 7.6 • Σ ⊆ wΓ means that Σ is a finite subset of Γ.
•

∧
wΓ is the set {

∧
Σ | Σ ⊆ wΓ } of conjunctions of all finite subsets of Γ.

• ψ −→ Γ = {ψ −→ φ | φ ∈ Γ } .
• For each edge S k //S

′
and Γ : S

′
, define [k]Γ = {[k]φ | φ ∈ Γ }: S.

7.3 Deduction systems

Let D = { ⊢ s | S ∈ IngT } be a collection of relations ⊢ S ⊆ P(FormS) ×
FormS . Then D is a T -deduction system if the following hold for all ingredi-
ents S:
• Assumption rule: φ ∈ Γ ∪AxS implies Γ ⊢ Sφ.
• Modus ponens: {φ,φ −→ ψ } ⊢ Sψ .
• Cut rule: If Γ ⊢ Sψ for all ψ ∈ Σ and Σ ⊢ Sφ, then Γ ⊢ Sφ.
• Deduction rule: Γ ∪ {φ } ⊢ Sψ implies Γ ⊢ Sφ −→ ψ.
• Constant rule: If X ∈ IngT , {¬ {c } | c ∈ X } ⊢ X ⊥ X .

• Definite box rule: For each edge S k //S
′
in IngT with k a definite con-

structor, Γ ⊢ S′ψ implies [k]Γ ⊢ S [k]ψ.
• Archimedean rule: If △ S ∈ IngT , {[ ≥ p]φ | p < q } ⊢ △S [ ≥ p]φ .
• Countable additivity rule: If △S ∈ IngT , then for countable Γ :: S, Γ ⊢ Sψ
implies [ ≥ p](

∧
wΓ) ⊢ △S [ ≥ p]ψ.
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Also we can define local and global semantics consequence relations for Γ ∪
{φ } ⊆ FormS by:

Γ |= S
αφ ⇔ ∀x ∈ SX, α (x |= SΓ⇒ α, x |= Sφ );

Γ |= Sφ ⇔ Γ |= S
αφ ∀T, α.

Theorem 7.7 (1) For any T -coalgebra (X, α), the system ConseqT
α =

{ |= S
α | S ∈ IngT } of local consequence relations is a T -deduction system.

(2) The global system ConseqT = { |= S | S ∈ IngT } is a T -deduction system.

Proof. See [10]. 2

Interpretation (Formula) With our construction in a measurable space X =
(X,AX,AX

g) we can interpret ontic proposition as measurable sets and doxastic
proposition as subsets of X. (Epistemic relation) A measure on a measurable
space can define different equivalence relations on it. For example with below
definition of a equivalence relation we can consider a measurable space as an
epistemic model with one cell information.

s ∼ t iff µ({s, t }) ≤ 1.

(Knowledge) We can interpret knowledge for a coalgebra (X, α) and sort S as
below:

KSφ = [ ≥ p]φ α, µ |= △SKφ⇐⇒ µ([[φ]]S
α) = 1.

Example 7.8 Suppose Ahmad hears from radio that one cities of Kerman
is raining. Weatherman does not specify that which cities are now raining.
Suppose that Kerman has five cities and Ahmad learns from four different
ways that there isn’t raining in four cities of Kerman. By omitting cities which
there isn’t raining in, Ahmad finds the raining city. Suppose that S1 is the
initial epistemic model of Ahmad’s knowledge which has five states s1, s2, s3,
s4 and s5 that are equivalent (S = {s1, s2, s3, s4, s5 } ). S5 is the final epistemic
model of Ahmad’s knowledge with one state s5 that specifies the raining city.

S1
σ1,2 //S2

σ2,3 //S3
σ3,4 //S4

σ4,5 //S5 .

To study this protocol we define a category as below:
Objects = {S1,S2,S3,S4,S5 }.
Arrows= {σ1,1, σ2,2, σ3,3, σ4,4, σ5,5, σ1,2, σ1,3, σ1,4, σ1,5, σ2,3, σ2,4, σ2,5, σ3,4, σ3,5,
σ4,5 }. With Preσi,j = Sj .
Above objects and arrows define an epistemic category. Total set T with
t0 < t1 < t2 < t3 < t4 members showing a time order for different actions
that happened for Ahmad. We show this epistemic category by C∥.∥S and
measurable epistemic category by C∥.∥S . Now we consider � and ♢ on

CopT

∥.∥S .
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�,♢ : CopT

∥.∥S −→ CopT

∥.∥S .

Indeed � and ♢ are as bellow:

� = S1 × S2 × S3 × S4 × S5.
♢ = S1 + S2 + S3 + S4 + S5.

Also we have: Ing� = Ing♢ = {S1,S2, S3, S4, S5 } . To study the above pro-
tocol we can study the coalgebras (Si, σi,j) with mentioned syntax, semantics
and deduction systems.

8 Conclusion

We saw how we could present syntax, semantics and deduction systems for
coalgebras over measurable spaces. Also we showed that Cop

∥.∥S is a subcat-
egory of measurable spaces. The question about capability of applying these
syntax, semantics and deduction systems to Cop

∥.∥S is natural. These con-
ditions are closed under finite products, coprducts and ∆. We showed that
Cop

∥.∥S has finite products and coproducts. We don’t consider any condition
for ∆ so Cop

∥.∥S is closed under ∆. Also the functors ♢ and � are polynomial.
Therefore with Cop

∥.∥S and temporal functors we can formalize epistemic pro-
tocols and present syntax, semantics and deduction systems for them. We can
extend this settings for other modal changes because our settings are indepen-
dent from modal relation. Indeed we can present a logical core for epistemic
change and any other changes that can be applied to Kripke models and action
Kripke models with the rule of update product.

9 Further Work

• It seems we can apply this setting for quantum changes. Baltag and Smets
presented a formalization for quantum changes with dynamic logic [3,4].We
can consider quantum models and action quantum models like of epistemic
models and action epistemic models. Also linear temporal logic is compatible
with quantum logic [9].
• Other formalizing of other intuition of time by functors is interesting. We
can present several protocols with these functors for any epistemic category.
• We see the relation between amount of actions and information cells is
important in the properties of epistemic categories. It seems we can have a
discussion for this relation in a philosophical context.
• It’s likely that we can consider our structure as a system core for different
changes. Applying different changes by our materials and the developments of
this system is still open.
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